Regulation of lipid synthesis genes and milk fat production in human mammary epithelial cells during secretory activation.
نویسندگان
چکیده
Expression of genes for lipid biosynthetic enzymes during initiation of lactation in humans is unknown. Our goal was to study mRNA expression of lipid metabolic enzymes in human mammary epithelial cell (MEC) in conjunction with the measurement of milk fatty acid (FA) composition during secretory activation. Gene expression from mRNA isolated from milk fat globule (MFG) and milk FA composition were measured from 6 h to 42 days postpartum in seven normal women. Over the first 96 h postpartum, daily milk fat output increased severalfold and mirrored expression of genes for all aspects of lipid metabolism and milk FA production, including lipolysis at the MEC membrane, FA uptake from blood, intracellular FA transport, de novo FA synthesis, FA and glycerol activation, FA elongation, FA desaturation, triglyceride synthesis, cholesterol synthesis, and lipid droplet formation. Expression of the gene for a key lipid synthesis regulator, sterol regulatory element-binding transcription factor 1 (SREBF1), increased 2.0-fold by 36 h and remained elevated over the study duration. Expression of genes for estrogen receptor 1, thyroid hormone-responsive protein, and insulin-induced 2 increased progressively to plateau by 96 h. In contrast, mRNA of peroxisome proliferator-activated receptor-γ decreased severalfold. With onset of lactation, increased de novo synthesis of FA was the most prominent change in milk FA composition and mirrored the expression of FA synthesis genes. In conclusion, milk lipid synthesis and secretion in humans is a complex process requiring the orchestration of a wide variety of pathways of which SREBF1 may play a primary role.
منابع مشابه
Electronic Northern Analysis of Genes and Modeling of Gene Networks Underlying Bovine Milk Fat Production
Milk fat is one of the most important economic traits in dairy animals. Yet, the biological machinery involved in milk fat synthesis remains poorly understood. In the present study, expression profiling of 45 genes involved in lipid biosynthesis and secretion was performed using a computational approach to identify those genes that are differentially expressed in mammary tissue. Transcript abun...
متن کاملUnderlying mechanisms involved in the decrease of milk secretion during Escherichia coli endotoxin induced mastitis in lactating mice
Mastitis, the inflammation of mammary glands resulting from bacterial infection, disrupts milk production in lactating mammary glands. In this study, we injected lipopolysaccharide (LPS), one of the endotoxins from Escherichia coli into mouse mammary glands to disrupt milk production, and we investigated the influence of LPS on nutrient uptake, synthesis, and secretion processes for milk compon...
متن کاملProlactin-mediated regulation of lipid biosynthesis genes in vivo in the lactating mammary epithelial cell.
Prolactin (PRL) is known to play an essential role in mammary alveolar proliferation in the pregnant mouse, but its role in lactation has been more difficult to define. Genetic manipulations that alter expression of the PRL receptor and its downstream signaling molecules resulted in developmental defects that may directly or indirectly impact secretory activation and lactation. To examine the i...
متن کاملCytoplasmic lipid droplet accumulation in developing mammary epithelial cells: roles of adipophilin and lipid metabolism.
PAT proteins (perilipin, adipophilin, and TIP47) are hypothesized to be critical regulators of lipid accumulation in eukaryotic cells. We investigated the developmental relationships between the expression of these proteins and cytoplasmic lipid droplet (CLD) accumulation in differentiating secretory epithelial cells in mouse mammary glands. Adipophilin (ADPH) specifically localized to CLD in d...
متن کاملMaternal Obesity Reduces Milk Lipid Production in Lactating Mice by Inhibiting Acetyl-CoA Carboxylase and Impairing Fatty Acid Synthesis
Maternal metabolic and nutrient trafficking adaptations to lactation differ among lean and obese mice fed a high fat (HF) diet. Obesity is thought to impair milk lipid production, in part, by decreasing trafficking of dietary and de novo synthesized lipids to the mammary gland. Here, we report that de novo lipogenesis regulatory mechanisms are disrupted in mammary glands of lactating HF-fed obe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 305 6 شماره
صفحات -
تاریخ انتشار 2013